Supercapacitors
Electrochemical energy conversion between electricity and chemicals through electrocatalysis is a promising strategy for the development of clean and sustainable energy sources. This is because efcient electrocatalysts can greatly reduce energy loss during the conversion process. However, poor catalytic performances and a shortage in catalyst material resources have greatly restricted the widespread applications of electrocatalysts in these energy conversion processes. To address this issue, earth-abundant two-dimensional (2D) materials with large specifc surface areas and easily tunable electronic structures have emerged in recent years as promising high-performance electrocatalysts in various reactions, and because of this, this review will comprehensively discuss the engineering of these novel 2D material-based electrocatalysts and their associated heterostructures. In this review, the fundamental principles of electrocatalysis and important electrocatalytic reactions are introduced. Following this, the unique advantages of 2D material-based electrocatalysts are discussed and catalytic performance enhancement strategies are presented, including the tuning of electronic structures through various methods such as heteroatom doping, defect engineering, strain engineering, phase conversion and ion intercalation, as well as the construction of heterostructures based on 2D materials to capitalize on individual advantages. Finally, key challenges and opportunities for the future development of these electrocatalysts in practical energy conversion applications are presented.
Full-text:https://link.springer.com/article/10.1007/s41918-019-00045-3/fulltext.html
The development of novel electrochemical energy storage (EES) technologies to enhance the performance of EES devices in terms of energy capacity, power capability and cycling life is urgently needed. To address this need, supercapatteries are being developed as innovative hybrid EES devices that can combine the merits of rechargeable batteries with the merits of supercapacitors into one device. Based on these developments, this review will present various aspects of supercapatteries ranging from charge storage mechanisms to material selection including electrode and electrolyte materials. In addition, strategies to pair diferent types of electrode materials will be discussed and proposed, including the bipolar stacking of multiple supercapattery cells internally connected in series to enhance the energy density of stacks by reducing the number of bipolar plates. Furthermore, challenges for this stack design will also be discussed together with recent progress on bipolar plates.
Full-text:https://link.springer.com/article/10.1007/s41918-020-00063-6