Loading...

Table of Content

    20 September 2021, Volume 4 Issue 3
    Recent Progress in Polyanionic Anode Materials for Li (Na)-Ion Batteries
    Yao Liu, Wei Li, Yongyao Xia
    2021, 4(3):  447-472.  doi:10.1007/s41918-021-00095-6
    Asbtract ( 491 )   PDF  
    Related Articles | Metrics
    In recent years, rechargeable lithium-ion batteries (LIBs) have become widely used in everyday applications such as portable electronic devices, electric vehicles and energy storage systems. Despite this, the electrochemical performance of LIBs cannot meet the energy demands of rapidly growing technological evolutions. And although significant progress has been made in the development of corresponding anodes based primarily on carbon, oxide and silicon materials, these materials still possess shortcomings in current LIB applications. For example, graphite exhibits safety concerns due to an operating potential close to that of lithium (Li) metal plating whereas Li4Ti5O12 possesses low energy density for high operation potential and silicon experiences limited cyclability for large volume expansion during charging/discharging. Alternatively, polyanionic compounds such as (PO4)3-, (SiO4)4-, (SO4)2- and (BO3)3- as electrode materials have gained increasing attention in recent years due to their ability to stabilize structures, adjust redox couples and provide migration channels for "guest" ions, resulting in corresponding electrode materials with long-term cycling, high energy density and outstanding rate capability. Based on these advantages and combined with recent findings in terms of silicate anodes, this review will summarize the recent progress in the development of polyanion-based anode materials for LIBs and sodium-ion batteries. Furthermore, this review will present our latest research based on polyanion groups such as (GeO4)4- to compensate for the lack of available studies and to provide our perspective on these materials.
    Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis
    Huimin Wu, Chuanqi Feng, Lei Zhang, Jiujun Zhang, David P. Wilkinson
    2021, 4(3):  473-507.  doi:10.1007/s41918-020-00086-z
    Asbtract ( 490 )   PDF  
    Related Articles | Metrics
    Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources. However, both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) associated with water electrolysis are kinetically sluggish, leading to low efficiency in corresponding electrolysis devices. In addition, current electrocatalysts that can catalyze both HER and OER to practical rates require noble metals such as platinum that are low in abundance and high in price, severely limiting commercialization. As a result, the development of high-performance and cost-effective non-noble metal electrocatalysts to replace noble ones has intensified. Based on this, this review will comprehensively present recent research in the design, synthesis, characterization and performance validation/optimization of non-noble metal HER electrocatalysts and analyze corresponding catalytic mechanisms. Moreover, several important types of non-noble metal electrocatalysts including zero-dimensional, one-dimensional, two-dimensional and three-dimensional materials are presented with an emphasis on morphology/structure, synergetic interaction between metal and support, catalytic property and HER activity/stability. Furthermore, existing technical challenges are summarized and corresponding research directions are proposed toward practical application.Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources. However, both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are kinetically sluggish, causing low efficiency of the electrolysis devices. The currently used noble metals, such as Pt-based electrocatalysts for catalyzing both HER and OER to practical rates, have low abundances and high price, limiting their commercialization. In this regard, developing high-performance and cost-effective non-noble metal electrocatalysts to replace noble ones has become a hot research topic.
    Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels
    Yun Zheng, Zhongwei Chen, Jiujun Zhang
    2021, 4(3):  508-517.  doi:10.1007/s41918-021-00097-4
    Asbtract ( 534 )   PDF  
    Related Articles | Metrics
    Solid oxide electrolysis cells (SOECs) including the oxygen ion-conducting SOEC (O-SOEC) and the proton-conducting SOEC (H-SOEC) have been actively investigated as next-generation electrolysis technologies that can provide high-energy conversion efficiencies for H2O and CO2 electrolysis to sustainably produce hydrogen and low-carbon fuels, thus providing higher-temperature routes for energy storage and conversion. Current research has also focused on the promotion of SOEC critical components to accelerate wider practical implementation. Based on these investigations, this perspective will summarize the most recent progress in the optimization of electrolysis performance and long-term stability of SOECs, with an emphasis on material developments, technological approaches and improving strategies, such as nano-composing, surface/interface engineering, doping and in situ exsolution. Existing technical challenges are also analyzed, and future research directions are proposed to achieve SOEC technical maturity and economic feasibility for diverse conversion applications.Solid oxide electrolysis cells (SOECs), including oxygen ion-conducting SOEC (O-SOEC) and proton-conducting SOEC (H-SOEC), have been actively investigated as one type of next generation electrolysis technologies with high-energy conversion efficiencies, which provide higher-temperature routes for energy storage and conversion.
    High-Temperature Electrochemical Devices Based on Dense Ceramic Membranes for CO2 Conversion and Utilization
    Wenping Li, Jing-Li Luo
    2021, 4(3):  518-544.  doi:10.1007/s41918-021-00099-2
    Asbtract ( 562 )   PDF  
    Related Articles | Metrics
    The adverse effects of global warming and climate change have driven the exploration of feasible routes for CO2 capture, storage, conversion and utilization. The processes related to CO2 conversion in high-temperature electrochemical devices (HTEDs) using dense ceramic membranes are particularly appealing due to the simultaneous realization of highly efficient CO2 conversion and value-added chemical production as well as the generation of electricity and storage of renewable energy in some cases. Currently, most studies are focused on the two processes, CO2 electrolysis and H2O/CO2 co-electrolysis in oxygen-conducting solid oxide electrolysis cell (O-SOEC) reactors. Less attention has been paid to other meaningful CO2-conversion-related processes in HTEDs and systematic summary and analysis are currently not available. This review will fill the gap and classify the CO2-conversion-related processes in HTEDs reported in recent years into four types according to the related reactions, including assisted CO2 reduction to CO, H2O and CO2 co-conversion, dry reforming of methane and CO2 hydrogenation. Firstly, an overview of the fundamentals of HTED processes is presented, and then the related mechanism and research progress of each type of reactions in different HTEDs are elucidated and concluded accordingly. The remaining major technical issues are also briefly introduced. Lastly, the main challenges and feasible solutions as well as the future prospects of HTEDs for CO2-conversion-related processes are also discussed in this review.
    How Do Polymer Binders Assist Transition Metal Oxide Cathodes to Address the Challenge of High-Voltage Lithium Battery Applications?
    Tiantian Dong, Pengzhou Mu, Shu Zhang, Huanrui Zhang, Wei Liu, Guanglei Cui
    2021, 4(3):  545-565.  doi:10.1007/s41918-021-00102-w
    Asbtract ( 502 )   PDF  
    Related Articles | Metrics
    Research on the chemistry of high-energy-density transition metal oxide cathodes (TMOCs) is at the forefront in the pursuit of lithium-ion batteries with increased energy density. As a critical component of these cathodes, binders not only glue cathode active material particles and conducting carbons together and to current collectors but also play pivotal roles in building multiscale compatible interphases between electrolytes and cathodes. In this review, we outline several vital design considerations of high-voltage binders, several of which are already present in traditional binder design that need to be highlighted, and systematically reveal the chemistry and mechanisms underpinning such binders for in-depth understanding. Further optimization of the design of polymer binders to improve battery performance is also discussed. Finally, perspectives regarding the future rational design and promising research opportunities of state-of-the-art binders for high-voltage TMOCs are presented.
    Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development
    Junwei Chen, Haixin Chen, Tongwen Yu, Ruchun Li, Yi Wang, Zongping Shao, Shuqin Song
    2021, 4(3):  566-600.  doi:10.1007/s41918-021-00104-8
    Asbtract ( 520 )   PDF  
    Related Articles | Metrics
    The electrochemical oxygen evolution reaction (OER) plays an important role in many clean electrochemical energy storage and conversion systems, such as electrochemical water splitting, rechargeable metal-air batteries, and electrochemical CO2 reduction. However, the OER involves a complex four-electron process and suffers from intrinsically sluggish kinetics, which greatly impairs the efficiency of electrochemical systems. In addition, state-of-the-art RuO2-based OER electrocatalysts are too expensive and scarce for practical applications. The development of highly active, cost-effective, and durable electrocatalysts that can improve OER performance (activity and durability) is of significant importance in realizing the widespread application of these advanced technologies. To date, considerable progress has been made in the development of alternative, noble metal-free OER electrocatalysts. Among these alternative catalysts, transition metal compounds have received particular attention and have shown activities comparable to or even higher than those of their precious metal counterparts. In contrast to many other electrocatalysts, such as carbon-based materials, transition metal compounds often exhibit a surface reconstruction phenomenon that is accompanied by the transformation of valence states during electrochemical OER processes. This surface reconstruction results in changes to the true active sites and an improvement or reduction in OER catalytic performance. Therefore, understanding the self-reconstruction process and precisely identifying the true active sites on electrocatalyst surfaces will help us to finely tune the properties and activities of OER catalysts. This review provides a comprehensive summary of recent progress made in understanding the surface reconstruction phenomena of various transition metal-based OER electrocatalysts, focusing on uncovering the correlations among structure, surface reconstruction and intrinsic activity. Recent advances in OER electrocatalysts that exhibit a surface self-reconstruction capability are also discussed. We identify possible challenges and perspectives for the development of OER electrocatalysts based on surface reconstruction. We hope this review will provide readers with some guidance on the rational design of catalysts for various electrochemical reactions.
    Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries
    Wentao Yao, Peichao Zou, Min Wang, Houchao Zhan, Feiyu Kang, Cheng Yang
    2021, 4(3):  601-631.  doi:10.1007/s41918-021-00106-6
    Asbtract ( 540 )   PDF  
    Related Articles | Metrics
    Metal anodes (e.g., lithium, sodium and zinc metal anodes) based on a unique plating/stripping mechanism have been well recognized as the most promising anodes for next-generation high-energy metal batteries owing to their superior theoretical specific capacities and low redox potentials. However, realizing full utilization and the theoretical capacity of metal anodes remains challenging because of their high reactivity, poor reversibility, and nonplanar metal evolution patterns, which lead to irreversible loss of active metals and the electrolyte. To minimize the above issues, excess metal sources and flooded electrolytes are generally used for laboratory-based studies. Despite the superior cycling performance achieved for these cells, the metal-anode-excess design deviates from practical applications due to the low anode utilization, highly inflated coulombic efficiency, and undesirable volumetric capacity. In contrast, anode-free configurations can overcome these drawbacks while reducing fabrication costs and improving cell safety. In this review, the significance of anode-free configurations is elaborated, and different types of anode-free cells are introduced, including reported designs and proposed feasible yet unexplored concepts. The optimization strategies for anode-free lithium, sodium, zinc, and aluminum metal batteries are summarized. Most importantly, the remaining challenges for extending the cycle life of anode-free cells are discussed, and the requirements for anode-free cells to reach practical applications are highlighted. This comprehensive review is expected to draw more attention to anode-free configurations and bring new inspiration to the design of high-energy metal batteries.Anode-free metal batteries can deliver higher energy densities than traditional anode-excess metal batteries and metal-ion batteries. Yet the cycle life of anode-free cells is limited by the non-planar growth and low coulombic efficiency of the metal anodes. In this review, we not only systematically elaborate the working/failure mechanisms and achieved progress for the reported anode-free Li/Na/Zn/Al battery systems, but also propose a series of conceptually-feasible yet unexplored anode-free systems.