Loading...

Table of Content

    20 June 2024, Volume 7 Issue 2
    Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability
    Hongshun Zhao, Jianbin Li, Qian Zhao, Xiaobing Huang, Shuyong Jia, Jianmin Ma, Yurong Ren
    2024, 7(2):  11.  doi:10.1007/s41918-024-00214-z
    Asbtract ( 207 )   PDF  
    Related Articles | Metrics
    Owing to their advantages, such as a high energy density, low operating potential, high abundance, and low cost, rechargeable silicon (Si) anode lithium-ion batteries (LIBs) have attracted considerable interest. Significant advancements in Si-based LIBs have been made over the past decade. Nevertheless, because the cycle instability is a crucial factor in the half/full-battery design and significantly affects the consumption of active components and the weight of the assembled battery, it has become a concern in recent years. This paper presents a thorough analysis of the recent developments in the enhancement methods for the stability of LIBs. Comprehensive in situ and operando characterizations are performed to thoroughly evaluate the electrochemical reactions, structural evolution, and degradation processes. Approaches for enhancing the cycle stability of Si anodes are systematically divided from a design perspective into several categories, such as the structural regulation, interfacial design, binder architecture, and electrolyte additives. The advantages and disadvantages of several methods are emphasized and thoroughly evaluated, offering insightful information for the logical design and advancement of cutting-edge solutions to address the deteriorating low-cycle stability of silicon-based LIBs. Finally, the conclusions and potential future research perspectives for promoting the cycling instability of silicon-based LIBs are presented.
    Li-Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries
    Linan Jia, Jinhui Zhu, Xi Zhang, Bangjun Guo, Yibo Du, Xiaodong Zhuang
    2024, 7(2):  12.  doi:10.1007/s41918-024-00212-1
    Asbtract ( 179 )   PDF  
    Related Articles | Metrics
    The emergence of all-solid-state Li batteries (ASSLBs) represents a promising avenue to address critical concerns like safety and energy density limitations inherent in current Li-ion batteries. Solid electrolytes (SEs) show significant potential in curtailing Li dendrite intrusion, acting as natural barriers against short circuits. However, the substantial challenges at the SEs-electrode interface, particularly concerning the anode, pose significant impediments to the practical implementation of ASSLBs. This review aims to delineate the most viable strategies for overcoming anode interfacial hurdles across four distinct categories of SEs: sulfide SEs, oxide SEs, polymer SEs, and halide SEs. Initially, pivotal issues such as anode interfacial side reactions, inadequate physical contact, and Li dendrite formation are comprehensively outlined. Furthermore, effective methodologies aimed at enhancing anode interfacial stability are expounded, encompassing approaches like solid electrolyte interface (SEI) interlayer insertion, SE optimization, and the adoption of Li alloy in lieu of Li metal, each tailored to specific SE categories. Moreover, this review presents novel insights into fostering interfaces between diverse SE types and Li anodes, while also advocating perspectives and recommendations for the future advancement of ASSLBs.
    Towards Greener Recycling: Direct Repair of Cathode Materials in Spent Lithium-Ion Batteries
    Jiahui Zhou, Xia Zhou, Wenhao Yu, Zhen Shang, Shengming Xu
    2024, 7(2):  13.  doi:10.1007/s41918-023-00206-5
    Asbtract ( 164 )   PDF  
    Related Articles | Metrics
    The explosive growth and widespread applications of lithium-ion batteries in energy storage, transportation and portable devices have raised significant concerns about the availability of raw materials. The quantity of spent lithium-ion batteries increases as more and more electronic devices depend on them, increasing the risk of environmental pollution. Recycling valuable metals in these used batteries is an efficient strategy to solve the shortage of raw materials and reduce environmental pollution risks. Pyrometallurgy, hydrometallurgy and direct repair have been extensively studied to achieve these goals. The latter is considered an ideal recycling method (for lithium-ion cathode materials) due to its low cost, energy consumption, short duration and environmental friendliness, and it is nondestructive towards the cathode material itself. However, the direct repair is still in its earlier development stages, and a series of challenges must be tackled to succeed in commerce. This work summarizes the process, its effect and the mechanism of different direct repair methods. Moreover, the energy consumption, greenhouse gas emissions, costs and benefits of different methods will be discussed from economic and environmental perspectives. Feasible strategies are also proposed to address existing challenges, providing an insightful overview of the direct reparation of spent lithium-ion cathode materials.
    Perovskite Oxides Toward Oxygen Evolution Reaction: Intellectual Design Strategies, Properties and Perspectives
    Lin Bo Liu, Chenxing Yi, Hong Cheng Mi, Song Lin Zhang, Xian Zhu Fu, Jing Li Luo, Subiao Liu
    2024, 7(2):  14.  doi:10.1007/s41918-023-00209-2
    Asbtract ( 148 )   PDF  
    Related Articles | Metrics
    Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications.
    Designing Organic Material Electrodes for Lithium-Ion Batteries: Progress, Challenges, and Perspectives
    Qiyu Wang, Thomas O'Carroll, Fengchun Shi, Yafei Huang, Guorong Chen, Xiaoxuan Yang, Alena Nevar, Natallia Dudko, Nikolai Tarasenko, Jingying Xie, Liyi Shi, Gang Wu, Dengsong Zhang
    2024, 7(2):  15.  doi:10.1007/s41918-024-00218-9
    Asbtract ( 223 )   PDF  
    Related Articles | Metrics
    Organic material electrodes are regarded as promising candidates for next-generation rechargeable batteries due to their environmentally friendliness, low price, structure diversity, and flexible molecular structure design. However, limited reversible capacity, high solubility in the liquid organic electrolyte, low intrinsic ionic/electronic conductivity, and low output voltage are the main problems they face. A lot of research work has been carried out to explore comprehensive solutions to the above problems through molecular structure design, the introduction of specific functional groups and specific molecular frameworks, from small molecules to polymer molecules, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and heterocyclic molecules; from simple organic materials to organic composites; from single functional groups to multi-functional groups; etc. The inevitable relationship between various molecular structure design and enhanced electrochemical properties has been illustrated in detail. This work also specifically discusses several approaches for the current application of organic compounds in batteries, including interfacial protective layer of inorganic metal oxide cathode, anode (metal lithium or silicon) and solid-state electrolyte, and host materials of sulfur cathode and redox media in lithium-sulfur batteries. This overview provides insight into a deep understanding of the molecular structure of organic electrode materials (OEMs) and electrochemical properties, broadens people’s research ideas, and inspires researchers to explore the advanced application of electroactive organic compounds in rechargeable batteries.
    High-Entropy Strategy for Electrochemical Energy Storage Materials
    Feixiang Ding, Yaxiang Lu, Liquan Chen, Yong-Sheng Hu
    2024, 7(2):  16.  doi:10.1007/s41918-024-00216-x
    Asbtract ( 170 )   PDF  
    Related Articles | Metrics
    Electrochemical energy storage technologies have a profound influence on daily life, and their development heavily relies on innovations in materials science. Recently, high-entropy materials have attracted increasing research interest worldwide. In this perspective, we start with the early development of high-entropy materials and the calculation of the configurational entropy. Then, we summarize the recent progress in material design and application using the high-entropy strategy, especially highlighting rechargeable battery materials. Finally, we discuss the potential directions for the future development of high-entropy energy materials.
    Recent Progress in Sodium-Ion Batteries: Advanced Materials, Reaction Mechanisms and Energy Applications
    Yujun Wu, Wei Shuang, Ya Wang, Fuyou Chen, Shaobing Tang, Xing Long Wu, Zhengyu Bai, Lin Yang, Jiujun Zhang
    2024, 7(2):  17.  doi:10.1007/s41918-024-00215-y
    Asbtract ( 178 )   PDF  
    Related Articles | Metrics
    For energy storage technologies, secondary batteries have the merits of environmental friendliness, long cyclic life, high energy conversion efficiency and so on, which are considered to be hopeful large-scale energy storage technologies. Among them, rechargeable lithium-ion batteries (LIBs) have been commercialized and occupied an important position as secondary batteries due to their high energy density and long cyclic life. Nevertheless, the uneven distribution of lithium resources and a large number of continuous consumptions result in a price increase for lithium. So, it is very crucial to seek and develop alternative batteries with abundant reserves and low cost. As one of the best substitutes for widely commercialized LIBs, sodium-ion batteries (SIBs) display gorgeous application prospects. However, further improvements in SIB performance are still needed in the aspects of energy/power densities, fast-charging capability and cyclic stability. Electrode materials locate at a central position of SIBs. In addition to electrode materials, electrolytes, conductive agents, binders and separators are imperative for practical SIBs. In this review, the latest progress and challenges of applications of SIBs are reviewed. Firstly, the anode and cathode materials for SIBs are symmetrically summarized from aspects of the design strategies and synthesis, electrochemical active sites, surrounding environments of active sites, reaction mechanisms and characterization methods. Secondly, the influences of electrolytes, conductive agents, binders and separators on the electrochemical performance are elucidated. Finally, the technical challenges are summarized, and the possible future research directions for overcoming the challenges are proposed for developing high performance SIBs for practical applications.
    Li Alloys in All Solid-State Lithium Batteries: A Review of Fundamentals and Applications
    Jingru Li, Han Su, Yu Liu, Yu Zhong, Xiuli Wang, Jiangping Tu
    2024, 7(2):  18.  doi:10.1007/s41918-024-00221-0
    Asbtract ( 167 )   PDF  
    Related Articles | Metrics
    All solid-state lithium batteries (ASSLBs) overcome the safety concerns associated with traditional lithium-ion batteries and ensure the safe utilization of high-energy-density electrodes, particularly Li metal anodes with ultrahigh specific capacities. However, the practical implementation of ASSLBs is limited by the instability of the interface between the anode and solid-state electrolyte (SSE). To mitigate this, considerable research has been dedicated to achieving enhanced stability at the anode/SSE interface. Among the current strategies for enhancing interface performance, the concept of Li-alloy materials is extensively used and well functionalized in various scenarios, including Li alloys as anodes, Li-alloy interlayers and Li alloys in the anode. Despite the notable achievements of Li-alloy materials in ASSLBs, the functionality, practicality and working mechanism of Li-alloys have not been fully elucidated. This review commences by providing an exhaustive and in-depth examination of the fundamental kinetics, thermodynamics, and mechanics, highlighting Li-alloy materials. Subsequently, through a systematic interconnection of material properties and their practical applications, we undertake a comprehensive analysis of the operative principles governing Li alloys. This analytical approach allows a thorough evaluation of the viability and utility of Li alloys within the context of ASSLBs. Finally, this review concludes by succinctly summarizing the future prospects and inherent potential of Li-alloy materials for further advancing the field of ASSLBs.