Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (3): 28-.doi: 10.1007/s41918-024-00220-1
所属专题: Batteries
• • 上一篇
Ruyu Shi1, Boran Wang1, Di Tang1, Xijun Wei2, Guangmin Zhou1
Ruyu Shi1, Boran Wang1, Di Tang1, Xijun Wei2, Guangmin Zhou1
摘要: With the proposal of the global carbon neutrality target, lithium-ion batteries (LIBs) are bound to set off the next wave of applications in portable electronic devices, electric vehicles, and energy-storage grids due to their unique merits. However, the growing LIB market poses a severe challenge for waste management during LIB recycling after end-of-life, which could cause serious environmental pollution and resource waste without proper treatment. Pyrometallurgical, hydrometallurgical, and direct recycling of spent LIBs have been developed, guided by the “waste to wealth” principle, and were applied to LIB remanufacturing. However, some spent LIB materials with low values or great direct regeneration difficulties may not be suitable for the above options, necessitating expanded application ranges of spent LIBs. Considering their unique compositions, using waste electrode materials directly or as precursors to prepare advanced catalysts has been proposed as another promising disposal technology for end-of-life LIBs. For example, transition metal elements in the cathode, like Ni, Co, Mn, and Fe, have been identified as catalytic active centers, and graphite anodes can serve as the catalyst loading matrix. This scheme has been adopted in various catalysis applications, and preliminary progress has been made. Therefore, this review summarizes and discusses the application of spent LIB recycling materials in catalysis and classified it into three aspects: environmental remediation, substance conversion, and battery-related catalysis. Moreover, the existing challenges and possible foci of future research on spent LIB recycling are also discussed. This review is anticipated to mark the start of close attention to the high-value-added applications of spent LIB products, enhancing economic efficiency and sustainable development.